在编译目标板Qt之前,先要理解什么是SGX:
The SGX subsystem is a Texas Instruments instantiation of the POWERVR SGX530 core form Imagination Technologies Ltd.
The 2D/3D graphics accelerator (SGX) subsystem accelerates 2-dimensional (2D) and 3-dimensional (3D) graphics applications. The SGX subsystem is based on the POWERVR SGX core from Imagination Technologies. SGX is a new generation of programmable POWERVR graphic cores. The POWERVR SGX530 v1.2.5 architecture is scalable and can target all market segments from mainstream mobile devices to high-end desktop graphics. Targeted applications include feature phone, PDA, and hand-held games.
A. 修改memuconfig中有关reset的内容:
使用make menuconfig命令,使能RESET_CONTROLLER:
CONFIG_RESET_CONTROLLER=y
这一步是必须的,因为PVR服务的pvrsrvkm模块用到了很多reset_control_*函数。
B. 为drivers/reset/core.c文件添加如下内容:
int reset_control_is_reset(struct reset_control *rstc)
{
if (rstc->rcdev->ops->is_reset)
return rstc->rcdev->ops->is_reset(rstc->rcdev, rstc->id);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(reset_control_is_reset);
int reset_control_clear_reset(struct reset_control *rstc)
{
if (rstc->rcdev->ops->clear_reset)
return rstc->rcdev->ops->clear_reset(rstc->rcdev, rstc->id);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(reset_control_clear_reset);
这两个函数会给Graphics SDK调用,因此需要定义它们。重新编译之后,函数名会内核源代码根目录下的System.map文件中出现。
C. 为include/linux/reset-controller.h文件添加如下内容:
struct reset_control_ops {
int (*reset)(struct reset_controller_dev *rcdev, unsigned long id);
int (*assert)(struct reset_controller_dev *rcdev, unsigned long id);
int (*deassert)(struct reset_controller_dev *rcdev, unsigned long id);
int (*is_reset)(struct reset_controller_dev *rcdev, unsigned long id);
int (*clear_reset)(struct reset_controller_dev *rcdev, unsigned long id);
};
相应的为 reset_control_ops结构体增加成员变量。
D. 为include/linux/reset.h文件添加如下内容:
int reset_control_reset(struct reset_control *rstc);
int reset_control_assert(struct reset_control *rstc);
int reset_control_deassert(struct reset_control *rstc);
int reset_control_is_reset(struct reset_control *rstc);
int reset_control_clear_reset(struct reset_control *rstc);
相应的为头文件做声明。
F. 添加ti_reset.c文件:
drivers/reset/core.c文件声明了一个结构体struct reset_control,它的定义则由函数of_reset_control_get返回,并且在返回之前给其成员变量struct reset_controller_dev *rcdev赋值。
of_reset_control_get函数被reset_control_get函数调用;reset_control_get函数被SGX的PVRSRVDriverProbe函数调用。
在继续调试之前,先来理解list_for_each:
/**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next) \
pos = list_next_entry(pos, member))
pos是循环变量,相当于for循环里面的i;head是链表list的表头;list_next_entry展开得到:
container_of((pos)->member.next, typeof(*(pos)), member);
container_of的原型是container_of(ptr, type, member) ,它是一个非常常见的宏定义,含义是,返回type类型的地址,type类型包含了member类型,而ptr是实际的member类型指针。所以list_next_entry的含义是,返回一个typeof(*(pos))的地址,它包含有member这个类型,且(pos)->member.next指向这个member。
再来理解 list_for_each_entry:
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_first_entry(head, typeof(*pos), member); \
&pos->member != (head); \
pos = list_next_entry(pos, member))
pos是循环变量,相当于for循环里面的i;head是链表list的表头;member是被包含的类型定义;
首先,pos初始化为typeof(*pos)类型的指针,它包含有member类型,且member的地址为head->next;
然后,如果没有循环返回到head,则pos会指向包含有(pos)->member.next的pos类型地址。
所以,of_reset_control_get函数中的list_for_each_entry(r, &reset_controller_list, list)含义是:
r相当与for循环里面的i,指向下一个被操作的struct reset_controller_dev;reset_controller_list是链表的表头;
首先,r初始化为struct reset_controller_dev类型的指针,它包含有list类型,且list的地址为(&reset_controller_list)->next;
但是已知 reset_controller_list在此文件头被初始化了,它是一个空链表:
static LIST_HEAD(reset_controller_list);
因此为了让list_for_each_entry得到有效的执行,即得到可用的rcdev,需要执行reset_controller_register函数。
So,将TI公司提供的内核中的ti_reset.c拷贝到driver/reset目录下,它包含有关键的注册操作,即reset_controller_register函数。
另外,不要忘记修改Makefile和Kconfig。
另外,不要忘记把ti_reset.c中的.compatible值改为和am33xx.dtsi文件中相同的"ti,am3-prcm"。
G. 为drivers/video/fbdev/da8xx-fb.c文件添加如下内容:
static vsync_callback_t vsync_cb_handler;
static void *vsync_cb_arg;
H. 为include/video/da8xx-fb.h文件添加如下内容:
typedef void (*vsync_callback_t)(void *arg);
int register_vsync_cb(vsync_callback_t handler, void *arg, int idx);
int unregister_vsync_cb(vsync_callback_t handler, void *arg, int idx);
A. 新建目标文件系统:
[maria@localhost qt]$ mkdir /home/maria/qt/rootfs -p
它相当于目标文件系统的根目录。
B. 编译busybox,将输出拷贝到目标文件系统:
make ARCH=arm CROSS_COMPILE=/opt/i686-arago-linux/usr/bin/arm-linux-gnueabihf- menuconfig
make ARCH=arm CROSS_COMPILE=/opt/i686-arago-linux/usr/bin/arm-linux-gnueabihf- all
make ARCH=arm CROSS_COMPILE=/opt/i686-arago-linux/usr/bin/arm-linux-gnueabihf- install
使用busybox默认配置即可,不用修改它。
之前在《为AM335x移植Linux内核主线代码》系列里,制作busybox的时候使用了静态编译,动态编译无法运行,这是因为动态编译的_install/bin/busybox找不到装载器。
解决的方法很简单,就是拷贝正确的装载器和库文件,放置在目标文件系统的正确位置即可,见接下来的步骤。
编译完成之后,将_install目录下的所有内容,拷贝到A步骤创建的rootfs下:
bin linuxrc sbin usr
C. 创建lib目录,拷贝库文件:
在目标文件系统的根目录下,创建lib目录;
一般这些库文件在交叉编译器安装目录下的libc里面,除了busybox需要的三个库文件之外,还有很多其他的库文件;
将这些库文件拷贝到lib目录中;
D. 创建etc目录,编辑需要的内容:
创建rc0.d、rc1.d、rc2.d、rc3.d、rc4.d、rc5.d、rc6.d、rcS.d八个目录;
将SDK开发包提供的文件系统中的etc/group、etc/passwd、etc/shadow三个文件拷贝过来;
将SDK开发包提供的文件系统中的etc/default/rcS文件拷贝过来;
将SDC开发包提供的文件系统中的etc/inittab文件拷贝过来;
将SDC开发包提供的文件系统中的etc/fstab文件拷贝过来;
将SDC开发包提供的文件系统中的etc/init.d/rc、/etc/init.d/rcS文件拷贝过来;
E. 创建dev、home、home/root、media、mnt、opt、proc、sys、var目录:
无需拷贝dev文件,因为内核会生成它们。
将目标文件系统拷贝到SD卡的rootfs分区,然后将SD插入目标板,上电运行,串口终端会出现启动信息,最终出现登陆提示符。这说明,Linux的runlevel 3已经可以正确运行了。
NOTE:configure的编译选项,需要根据主机和目标板的实际情况慢慢摸索,有的编译选项随着新版本的发布不再支持,有的编译选项被添加在新版本中,有的编译错误即使存在也没有关系,有的编译错误则会影响结果。一般来说,提示“Just run 'gmake'”就算是成功。
NOTE:configure会生成很多.o文件,在重新configure之前可以编写脚本,来删除旧有的.o文件。